

Solution of Polynomial Equation of any Degree ' n ' with Special Emphasis for $\mathrm{n}=(2,3,4,5 \& 6$)
 Oliver Couto 1*, Seiji Tomita 2

1 University of Waterloo, Mathematics Student, Ontario, Canada
2 Computation number Theory, Theorist, Tokyo, Japan
email fermat@m15.alpha-net.ne.jp
*Corresponding author email samson@celebrating-mathematics.com

$$
\begin{gather*}
\text { Absract } \\
\text { In this paper we deal with the below mentioned general polynomial } \\
\text { equation of any degree ' } n \text { ': } \\
a_{n} x^{n}+a_{n-1} x^{n-1} y+----+a_{2} x^{2} y^{n-2}+ \\
a_{1} x y^{n-1}+a_{0} y^{n}=a_{n} u^{n}+a_{n-1} u^{n-1} v+----+ \\
a_{2} u^{2} v^{n-2}+a_{1} u v^{n-1}+a_{0} v^{n}--------------- \text { (A) } \tag{A}
\end{gather*}
$$

First in section(I) we show various methods of solution

$$
\text { for degree } n=(2,3,4,5,6)
$$

\& lastly in section (II) we show solution for degree seven
after arriving at a general solution for the polynomial equation (A) for any degree ' n '.

Keywords - (Symetrical Diophantine equations, Number Theory, Pure Math)

1. Theory \& Methods

Degree Two

$$
a_{2} x^{2}+a_{1} x y+a_{0} y^{2}=a_{2} u^{2}+a_{1} u v+a_{0} v^{2}
$$

Put $a 0=2, a 1=5, a 2=3$ we get

$$
3 x^{2}+5 x y+2 y^{2}=3 u^{2}+5 u v+2 v^{2}
$$

Let $x=t+n, y=-t+n, u=-t+m, v=t+m$,
This has parameterization in variables (m, n)

$$
x=5 m-4 n, \quad y=-5 m+6 n, \quad u=-4 m+5 n, \quad v=6 m-5 n
$$

Degree Three

$$
a_{3} x^{3}+a_{2} x^{2} y+a_{1} x y^{2}+a_{0} y^{3}=a_{3} u^{3}+a_{2} u^{2} v+a_{1} u v^{2}+a_{0} v^{3}
$$

Put $a_{0}=a_{1}=a_{2}=a_{3}=1$ we get

$$
x^{3}+x^{2} y+x y^{2}+y^{3}=u^{3}+u^{2} v+u v^{2}+v^{3}
$$

Let $u=t+n, v=t-n, x=p t+m, y=q t-m$
Substituting above \& after parameterization we get,

$$
\begin{gathered}
x=m\left(2 n^{2} m^{2}-2 n^{4}+m^{4}\right) \\
y=-m\left(2 n^{2} m^{2}+m^{4}+2 n^{4}\right) \\
u=n\left(-2 m^{3} n+m^{4}+2 n^{4}\right) \\
v=-n\left(2 m^{3} n+m^{4}+2 n^{4}\right)
\end{gathered}
$$

Degree Four

(See below section (II) after degree six)

Degree Five

$$
\begin{gathered}
a_{5} x^{5}+a_{4} x^{4} y+a_{3} x^{3} y^{2}+a_{2} x^{2} y^{3}+ \\
a_{1} x y^{4}+a_{0} y^{5}=a_{5} u^{5}+a_{4} u^{4} v+a_{3} u^{3} v^{2}+a_{2} u^{2} v^{3}+ \\
a_{1} u v^{4}+a_{0} v^{5}
\end{gathered}
$$

$$
\begin{gathered}
x^{5}+3 x^{4} y+3 x^{3} y^{3}+2 x^{2} y^{3}+2 x y^{4}+y^{5}= \\
u^{5}+3 u^{4} v+3 u^{3} v^{3}+2 u^{2} v^{3}+2 u v^{4}+v^{5} \\
u=t+n, \quad v=t-n, \quad x=p t+m, \quad y=q t-m
\end{gathered}
$$

Substituting above \& parameterization we get

$$
\begin{gathered}
x=-m\left(37 n^{7} w-84 n^{2} w m^{5}+47 m^{8}\right) \\
y=m\left(-26 n^{7} w-21 n^{2} w m^{5}+47 m^{8}\right) \\
u=-n *\left(84 m^{3} n^{5}-37 m^{8}-47 n^{7} w\right) \\
v=n\left(21 m^{3} n^{5}+26 m^{8}-47 n^{7} w\right), \quad \text { Where }, \quad w^{2}=m n
\end{gathered}
$$

Degree Six

$$
\begin{gather*}
a_{6} x^{6}+a_{5} x^{5} y+a_{4} x^{4} y^{2}+a_{3} x^{3} y^{3}+a_{2} x^{2} y^{5}+ \\
a_{1} x y^{5}+a_{0} y^{6}=a_{6} u^{6}+a_{5} u^{5} v+a_{4} u^{4} v^{2}+a_{3} u^{3} v^{3}+a_{2} u^{2} v^{4}+ \\
a_{1} u v^{5}+a_{0} v^{6}--------------(1) \\
\text { Let } x=p t+1, y=q t-1, u=p t-1, v=q t+1---(2) \\
\text { Substitute (2)to (1)and simplifying (1), we obtain } \\
+\left(-40 a 0 q^{3}-20 a 1 p q^{2}+20 a 1 q^{3}-8 a 2 q^{3}+2 a 3 q^{3}-20 a 5 p^{3}-24 a 4 p^{2} q+20 a 5 p^{2} q\right. \\
+8 a 4 p q^{2}+8 a 4 p^{3}+18 a 3 p^{2} q+24 a 2 p q^{2}-18 a 3 p q^{2}-8 a 2 p^{2} q+40 a 6 p^{3} \\
\left.-2 a 3 p^{3}\right) t^{3} \\
+\left(4 a 2 p p^{3} q^{2}+2 a 1 q^{5}-4 a 4 p^{4} q+4 a 2 p q^{4}-6 a 3 p^{3} q^{2}-2 a 5 p^{5}+12 a 6 p^{5}-12 a 0 q^{5}\right. \\
+4 a 4 q-8 a 2 q-2 a 1 p+6 a 3 q-12 a 0 q+10 a 1 q+2 a 5 q+8 a 4 p-10 a 5 p \\
+12 a 6 p-6 a 3 p) t \ldots \ldots \ldots \ldots \ldots \ldots \ldots)
\end{gather*}
$$

Equating to zero the coefficient of t in (3), then we obtain

$$
\begin{gathered}
a_{5}=-3 a 3+2 a 4+4 a 2+6 a 0-5 a 1 \\
a_{6}=-2 a 3+a 4+3 a 2+5 a 0-4 a 1 \\
\text { And furthermore set } \\
a_{4}=3 a 3+10 a 1-15 a 0-6 a 2 .
\end{gathered}
$$

To obtain the rational solution t of (3), discriminant must be square.

$$
\begin{array}{r}
4(p+q)^{6}\left((-21 a 1+36 a 0+10 a 2-3 a 3) p^{2}+(-2 a 2-18 a 0+8 a 1) q * p\right. \\
\left.+(6 a 0-a 1) q^{2}\right)(a 3+10 a 1-20 a 0-4 a 2)=\text { square } \ldots .(4) \tag{4}
\end{array}
$$

Thus substitute the parametric solution of (4)to (2), then we obtain the
parametric solution of (1).
we obtain the parametric solution of degree one as follows.

$$
\begin{gathered}
\text { Set } a_{3}=4 a 2-10 a 1+20 a 0 \text { and } a_{4}=6 a 2-20 a 1+45 a 0 . \\
a_{0}, a_{1}, \text { and } a_{2} \text { are arbitrary. }
\end{gathered}
$$

$$
\begin{aligned}
& x=\left(6 a_{0}-a_{1}\right) t+1 \\
& y=\left(-9 a_{1}+2 a_{2}+24 a_{0}\right) t-1 \\
& u=\left(6 a_{0}-a_{1}\right) t-1 \\
& v=\left(-9 a_{1}+2 a_{2}+24 a_{0}\right) t+1
\end{aligned}
$$

Example

Let $a_{0}=1, a 1=2, a 2=3, a 3=12, a 4=23, a 5=18, a 6=5$

$$
\begin{aligned}
& 5 x^{6}+18 x^{5} y+23 x^{4} y^{2}+12 x^{3} y^{3}+3 x^{2} y^{4}+2 x y^{5}+y^{6} \\
&=5 u^{6}+18 u^{5} v+23 u^{4} v^{2}+12 u^{3} v^{3}+3 u^{2} v^{4}+2 u v^{5}+v^{6} \\
& \quad \text { Solution is } \\
& x=4 t+1, y=12 t-1, u=4 t-1, v=12 t+1
\end{aligned}
$$

For $\mathrm{t}=2$ we get $(\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v})=(9,23,7,25)$

2. Proof And Solving

We have the polynomial equation (A)given below:

$$
\begin{gathered}
a_{n} x^{n}+a_{n-1} x^{n-1} y+----+a_{2} x^{2} y^{n-2}+ \\
a_{1} x y^{n-1}+a_{0} y^{n}=a_{n} u^{n}+a_{n-1} u^{n-1} v+----+ \\
a_{2} u^{2} v^{n-2}+a_{1} u v^{n-1}+a_{0} v^{n}
\end{gathered}
$$

Where $\left\{a_{n,} a_{n-1}, a_{n-2},-----a_{4}, a_{3}, a_{2}, a_{1}, a_{0}\right\}$ are coefficents of the above polynomial.
We fix the condition that (sum of even coefficients = sum of odd coefficients).
For quartic polynomial, we get after putting $n=4$ in eqn (A)

$$
\begin{gathered}
a_{4} x^{4}+a_{3} x^{3} y+a_{2} x^{2} y^{2}+ \\
a_{1} x y^{3}+a_{0} y^{4}=a_{4} u^{4}+a_{3} u^{3} v+a_{2} u^{2} v^{2}+a_{1} u v^{3}+a_{0} v^{4}
\end{gathered}
$$

Example for coefficients of degree four we have
$\left(a_{4}+a 2+a 0=a 3+a_{1}\right)$

Let $x=p t+1, y=q t-1, u=p t-1, v=q t+1$
We take $\left(a_{0}, a_{1}, a_{2}, \mathrm{t}\right)$ as parameters \& for simplicity we call $\left(a_{0}, a_{1}, a_{2}\right)=(\mathrm{d}, \mathrm{e}, \mathrm{f})$
Thus we have $\left(a_{4}-a_{3}\right)=(\mathrm{e}-\mathrm{d}-\mathrm{f})$ and equation (A) above becomes for $\mathrm{n}=4$
After some algebra we get after solving for (p, q),
$\mathrm{p}=4 \mathrm{~d}-\mathrm{e}, \quad \mathrm{q}=8 \mathrm{~d}-5 \mathrm{e}+2 \mathrm{f}, a_{3}=(4 \mathrm{~d}-3 \mathrm{e}+\mathrm{f}), \quad a_{4}=(3 \mathrm{~d}-2 \mathrm{e}+\mathrm{f})$

Similarly for Degree five

$$
\begin{gathered}
a_{5} x^{5}+a_{4} x^{4} y+a_{3} x^{3} y^{2}+a_{2} x^{2} y^{3}+ \\
a_{1} x y^{4}+a_{0} y^{5}=a_{5} u^{5}+a_{4} u^{4} v+a_{3} u^{3} v^{2}+a_{2} u^{2} v^{3}+ \\
a_{1} u v^{4}+a_{0} v^{5}
\end{gathered}
$$

We get for (p, q)

$$
p=5 d-e \quad \text { and } \quad q=15 d-7 e+2 f
$$

Also we get, $\quad a_{3}=(10 \mathrm{~d}-6 \mathrm{e}+3 \mathrm{f}), a_{4}=(15 \mathrm{~d}-8 \mathrm{e}+3 \mathrm{f}), \quad a_{5}=(6 \mathrm{~d}-3 \mathrm{e}+\mathrm{f})$
And so on for degrees ($6,7,8,------$ etc).
The coefficients " a_{3} " for degree (3, 4, 5, 6) are
$a_{3}=(\mathrm{d}-\mathrm{e}+\mathrm{f}) \quad$ for degree three
$a_{3}=(4 d-3 e+2 f) \quad$ for degree four
$a_{3}=(10 \mathrm{~d}-6 \mathrm{e}+3 \mathrm{f}) \quad$ for degree five
$a_{3}=(20 \mathrm{~d}-10 \mathrm{e}+4 \mathrm{f}) \quad$ for degree six
Thus the general form for the coefficient $\quad\left(a_{3}\right)=\left(r^{*} d-s^{*} e+w^{*} f\right)$
Putting the above in tabular form we have,

Coefficients $\left(a_{3}\right)$	Coefficient of d	Coefficient of e	Coefficient of f
Degree three	1	1	1
Degree four	4	3	2
Degree five	10	6	3
Degree six	20	10	4

The above three columns are in series, Hence they are represented as

$$
\begin{aligned}
& \text { Coefficent of ' } d \text { ' as, } \quad r=(p *(p+2)(p+1)) / 6 \\
& \text { Coefficent of ' } e \text { ' as, } s=(p(p+1)) / 2 \\
& \text { Coefficent of ' } f \text { ' as, } \quad w=(p)
\end{aligned}
$$

Since the 1st term is $p=1$ and the degree is $n=3$,
(n, p) are related as $\quad p=(n-2)$. After putting value of (p, r, s, w) in
$\left(a_{3}\right)=\left(r^{*} \mathrm{~d}-\mathrm{s}^{*} \mathrm{e}+\mathrm{w}^{*} \mathrm{f}\right)$ we get
Thus we get coefficent $\left(a_{3}\right)=\frac{(n-2)}{n!} *(n(n-1) d-3(n-1) e+6 f)$
In terms of degree ' n '
Thus (p, q) has representation in terms of degree ' n ' as
$P=(n * d-e)$ and $q=[n(n-2) d-(2 n-3) e+2 f]$
And the coefficients (a3, a4, a5, ---) as
$a_{3}=\frac{(n-2)}{n!} *(n(n-1) d-3(n-1) e+6 f)$

$$
\begin{gathered}
a_{4}=\frac{(n-2)(n-3)}{n!} *(3 n(n-1) d-8(n-1) e+12 f) \\
a_{5}=\frac{(n-2)(n-3)(n-4)}{n!} * \\
(6 n(n-1) d-15(n-1) e+20 f)
\end{gathered}
$$

\& so on for other coefficients $\left(a_{6}, a_{7}, a_{8},----a_{m},-----a_{n}\right)$ Where n ! is ' n ' factorial, $\quad n=(1 * 2 * 3 * 4 *-----* n)$

For integer m, value of coefficient (am) we arrive at,

$$
\begin{gathered}
a_{m}=\frac{(n-2)(n-3)--(n-m+1)}{2 *(m!)} * \\
((m-1)(m-2) n(n-1) d-2 m(m-2)(n-1) e+2 m(m-1) f)----(\mathrm{B})
\end{gathered}
$$

For coeeficent a_{6} put $\mathrm{m}=6$ in the above \& we get

$$
\begin{aligned}
& a_{6}=\frac{(n-2)(n-3)--(n-5)}{2 * 6!} * \\
& \quad(5 * 4 n(n-1) d-2 * 6(4)(n-1) e+2 * 6 * 5 f)
\end{aligned}
$$

Which simplyfies as,

$$
\begin{aligned}
a_{6}= & \frac{(n-2)(n-3)--(n-5)}{n!} \\
& \quad *(10 n(n-1) d-24(n-1) e+30 f)
\end{aligned}
$$

So now we solve by the new method, the polynomial equation of degree six by using the known coefficents above,

$$
\begin{gathered}
a_{6} x^{6}+a_{5} x^{5} y+a_{4} x^{4} y^{2}+a_{3} x^{3} y^{3}+a_{2} x^{2} y^{5}+ \\
a_{1} x y^{5}+a_{0} y^{6}=a_{6} u^{6}+a_{5} u^{5} v+a_{4} u^{4} v^{2}+a_{3} u^{3} v^{3}+a_{2} u^{2} v^{4}+ \\
a_{1} u v^{5}+a_{0} v^{6}
\end{gathered}
$$

Substituting the values of (m, n) in equation (B) for various coefficients
$\left(a_{3}, a_{4}, a_{5}, a_{6}\right)$ we get,
For example for,
a_{3} we put $\mathrm{m}=3, \mathrm{n}=6$
a_{4} we put $\mathrm{m}=4, \mathrm{n}=6$
a_{5} we put $\mathrm{m}=5, \mathrm{n}=6$
a_{6} we put $\mathrm{m}=6, \mathrm{n}=6$
Thus we get after the above substitution
$a_{3}=(20 d-10 e+4 f)$,
$a_{4}=(45 d-20 e+6 f)$ and
$a_{5}=(36 d-15 e+4 f)$,
$a_{6}=(10 \mathrm{~d}-4 \mathrm{e}+\mathrm{f})$
We know that $\quad p=(n * d-e) \quad \& \quad q=[n(n-2) d-(2 n-3) e+2 f]$

Hence for $n=6$ we get $p=(6 d-e), \quad(q=24 d-9 e+2 f)$
We have, $\quad x=p t+1, y=q t-1, u=p t-1, v=q t+1$
Let us take $d=5 e=4 \& f=3, t=2$ \& and
Since $\left(a_{0}=\mathrm{d}, a_{1}=\mathrm{e} \& a_{2}=\mathrm{f}, \mathrm{t}=\mathrm{t}\right)$
Hence we have $\left(a_{0}, a_{1}, a_{2}, \mathrm{t}\right)=(5,4,3,2)$ and
$p=26, q=90, a 3=72, a 4=163, a 5=172, a 6=37$
Thus the sum of even \& sum of odd coefficents are
$\left(a_{6}+a 4+a 2+a_{0}\right)=\left(a_{5}+a 3+a 1\right)$
$(37+163+3+5)=(132+72+4)=208$
$x=p t+1, y=q t-1, u=p t-1, v=q t+1$
And we get $(x, y, u, v)=(53,179,51,181)$
After substituting the coefficients in the sixth degree polynomial we get the below mentioned equation,

$$
\begin{gathered}
a_{6} x^{6}+a_{5} x^{5} y+a_{4} x^{4} y^{2}+a_{3} x^{3} y^{3}+a_{2} x^{2} y^{5}+ \\
a_{1} x y^{5}+a_{0} y^{6}=a_{6} u^{6}+a_{5} u^{5} v+a_{4} u^{4} v^{2}+a_{3} u^{3} v^{3}+a_{2} u^{2} v^{4}+ \\
a_{1} u v^{5}+a_{0} v^{6} \\
37 x^{6}+132 x^{5} y+163 x^{4} y^{2}+72 x^{3} y^{3}+3 x^{2} y^{4}+ \\
4 x y^{5}+5 y^{6}=37 u^{6}+132 u^{5} v+163 u^{4} v^{2}+72 u^{3} v^{3}+ \\
3 u^{2} v^{4}+4 u v^{5}+5 v^{6}
\end{gathered}
$$

The later equation can easily be verified that
$(x, y, u, v)=(53,179,51,181)$ is the solution to the sixth degree polynomial.

Degree, n=7

$$
\begin{gathered}
a_{7} x^{7}+a_{6} x^{6} y+a_{5} x^{5} y^{2}+a_{4} x^{4} y^{3}+a_{3} x^{3} y^{4}+a_{2} x^{2} y^{4}+ \\
a_{1} x y^{6}+a_{0} y^{7}=a_{7} u^{7}+a_{6} u^{6} y+a_{5} u v^{2}+a_{4} u^{4} v^{3}+a_{3} u^{3} v^{4}+a_{2} u^{2} v^{4}+
\end{gathered}
$$

$$
a_{1} u v^{6}+a_{0} v^{7}
$$

For $\mathrm{n}=7$ Using, $a_{0}=\mathrm{d}, a_{1}=\mathrm{e} \& a_{2}=\mathrm{f}, \mathrm{t}=\mathrm{t}$
\&

Substituting the values of (m, n) in equation (B) for various coeficents (a3, a4, a5, a6) we get, For example for,
a_{3} we put $\mathrm{m}=3, \mathrm{n}=7$
a_{4} we put $\mathrm{m}=4, \mathrm{n}=7$
a_{5} we put $\mathrm{m}=5, \mathrm{n}=7$
a_{6} we put $\mathrm{m}=6, \mathrm{n}=7$
a_{7} we put $\mathrm{m}=7, \mathrm{n}=7$.

Hence we get :
$a_{3}=(35 d-15 e+5 f), \quad a_{4}=(105 d-40 e+10 f)$
$a_{5}=(126 \mathrm{~d}-45 \mathrm{e}+10 \mathrm{f}), \quad a_{6}=(70 \mathrm{~d}-24 \mathrm{e}+5 \mathrm{f})$,
$a_{7}=(15 d-5 e+f)$
\& we get $p=(7 d-e), \quad(q=35 d-11 e+2 f)$
$p=31, q=137, a_{3}=130, a 4=395, a 5=480, a 6=269 \& a 7=58$
$x=p t+1, y=q t-1, u=p t-1, v=q t+1$
Hence for (ao, a1, a2, t) $=(5,4,3,2)$ we get
$\mathrm{p}=31, \mathrm{q}=137, a_{3}=130, \mathrm{a} 4=395, \mathrm{a} 5=480, \mathrm{a6}=269, a_{7}=58$
And $(x, y, u, v)=(63,273,61,275)$ \& we get the seventh degree polynomial given below

$$
\begin{aligned}
& 58 x^{7}+269 x^{6} y+480 x^{5} y^{2}+395 x^{4} y^{3}+130 x^{3} y^{4}+3 x^{2} y^{5}+4 x y^{6}+5 y^{7}= \\
& 58 u^{7}+269 u^{6} v+480 u^{5} v^{2}+395 u^{4} v^{3}+130 u^{3} v^{4}+3 u^{2} v^{5}+4 u v^{6}+5 v^{7}
\end{aligned}
$$

The later equation can easily be verified that $(x, y, u, v)=(63,273,61,275)$ is the solution to the seventh degree polynomial.

3. Conclusions

The later method can be used to solve polynomial equations of any degree ' n ' with only four parameters ($\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{t}$). Also polynomial equations like the above can be generated which we know have guaranteed integer solutions.

References:

1) Oliver Couto, Published Math paper, Taxicab Equations for power ($2,3,4$ \& 5), International Math Forum, Hikari Itd.,Vol.9,2014.n0.12, pages 561-577.
2) Seiji Tomita, Computation number theory- webpage, http://www.maroon.dti.ne.jp/fermat
3) Oliver Couto, Web page on Mathematics, http://www.celebrating-mathematics.com
4) Seiji Tomita, Fourth power polynomial equation, Computation number theorywebpage, http://www.maroon.dti.ne.jp/fermat/diop122e.html
5) Ajai Choudhry, On quartic Diophantine equation, $f(x, y)=f(u, v)$, Journal of number theory,75, (1999)
6) Seiji Tomita, sixth power polynomial equation, Computation number theorywebpage, http://www.maroon.dti.ne.jp/fermat/diop160e.html
7) Ramanujan lost notebook, Narosa publishing house
8) Euler Leonhard, Opera Omnia, 1984
9) Tito Piezas-Online collection of algebraic identities http://sites.google.com/site/tpiezas
10) Ajai Choudhry, Symmetrical Diophantine equations, Journal of mathematics, Rocky mountain journal vol 34,no.4,winter(2004), pg. 1261-1298.
11) Jaroslaw Wroblewski ,Tables of Numerical solutions for degree three, four, six seven \& nine, website, www.math.uni.wroc.pl/~jwr/eslp
12) L.E.Dickson, history of the theory of numbers, Vol.II, (Diophantine analysis), AMS Chelsea publication, reprinted year 2000
13) M. Khorramizadeh, Preserving sparity for general solution of linear Diophantine systems, International Journal -
of Contemporary Mathematical Sciences, 2014, vol. 9, no. 1, 19--23.
14) Y. Shang, A remark on the solvability of Diophantine matrix equation over M2(Q), Southeast Asian Bulletin of Mathematics,

2014, vol. 38, no. 2, 275--282.
15) C. Gauthier, G. Kientega, Solutions of some nonlinear-

Diophantine matrix equations, JP Journal of Algebra, Number Theory and Applications, 2009, vol. 14, no. 2, 157--175

