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                                      1.           Theory & Methods 

Degree Two 

    
            

      
            

  

Put a0=2, a1=5, a2=3 we get 

                        

                       Let                                     

                       This has parameterization in variables   (m, n) 
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Put   =  =  =  =1 we get 
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                    Substituting above & after parameterization we get,  
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Degree Four 

(See below section (II) after degree six) 

Degree Five 
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                        Substituting above & parameterization we get 
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Degree Six 
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For t = 2 we get   ( x , y, u, v ) = ( 9, 23, 7, 25 ) 

 

                                                              2.     Proof And Solving 
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Where {        ,     ,-------  ,   ,   ,   ,    } are coefficents of the above polynomial. 

We fix the condition that (sum of even coefficients = sum of odd coefficients). 

For quartic polynomial, we get after putting n=4 in eqn (A) 

      
      

       
     

     
      

      
      

       
         

      
  

   

Example for coefficients of degree four we have   

(    + a2 + a0 = a3 +    )  
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Let x=pt+1, y=qt-1, u=pt-1, v=qt+1 

We take (        , t) as parameters & for simplicity we call (        ) = (d, e, f) 

Thus we have (    -    ) = (e – d - f) and equation (A) above becomes for n = 4 

After some algebra we get after solving for (p, q), 

p = 4d - e ,   q = 8d - 5e + 2f,     = ( 4d - 3e + f ),      =( 3d - 2e + f ) 

----------- 

Similarly for Degree five  

    
      

       
        

     

     
      

     
      

       
        

     

     
      

  

                                            We get for (p, q) 

                             p = 5d-e             and                              q = 15d-7e+2f  

Also we get,                 = ( 10d - 6e + 3f ),       = (15d - 8e + 3f),         = (6d - 3e + f) 

And so on for degrees ( 6, 7, 8, ------ etc ).  

The coefficients ‘’      for degree (3, 4, 5, 6 ) are 

   = (d – e + f)              for degree three 

   = (4d-3e+2f)            for degree four 

   = (10d-6e+3f)          for degree five 

   = (20d-10e+4f)        for degree six 

Thus the general form for the coefficient     (  ) = ( r*d - s*e + w*f) 

Putting the above in tabular form we have, 

Coefficients (  ) Coefficient of d Coefficient of e Coefficient of  f 

Degree three 1 1 1 

Degree four 4 3 2 

Degree five 10 6 3 

Degree six 20 10 4 
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The above three columns are in series, Hence they are represented as 

                                (  (   )(   ))   

                                  ( (   ))   

                        ( ) 

Since the 1st term is p = 1 and the degree is n = 3, 

 (n, p) are related as      p = (n-2). After putting value of (p, r, s, w) in  

(  ) = (r*d - s*e + w*f)   we get  

Thus we get coefficent   (  ) = 
(   )

  
 ( (   )   (   )    ) 

 In terms of degree ’n’ 

Thus (p,q) has representation in terms of degree ‘n’ as 

P = ( n*d  -e)   and q = [ n(n-2)d - (2n-3)e + 2f ] 

And the coefficients (a3, a4, a5, ---) as 

   
(   )

  
 ( (   )   (   )    )   

   
(   )(   )

  
 (  (   )   (   )     ) 

   
(   )(   )(   )

  
  

                                                               (  (   )    (   )     )  

& so on for other coefficients (   ,   ,   ,  -----  ,------   ) 

                            (               ) 

For integer m, value of coefficient (am) we arrive at, 
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For coeeficent    put m=6 in the above & we get 

   
(   )(   )   (   )

    
  

                                                              (    (   )     ( )(   )        )  

Which simplyfies as, 

   
(   )(   )   (   )

  
 

                                                                       (   (   )    (   )     ) 

So now we solve by the new method, the polynomial equation of degree six by using the known 

coefficents above, 

    
      

       
        

        
     

     
      

      
     

       
        

        
     

     
      

  

Substituting the values of (m, n) in equation (B) for various coefficients  

(   ,   ,   ,    ) we get, 

For example for, 

    we put m=3, n=6 

   we put m=4,  n=6 

   we put m=5,  n=6 

   we put m=6,  n=6 

Thus we get after the above substitution  

  = (20d-10e+4f), 

  = (45d-20e+6f) and 

  = (36d-15e+4f),  

  = (10d-4e+f) 

We know that        p = (n*d - e)      &     q = [ n(n-2)d - (2n-3)e + 2f ] 
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Hence for n=6 we get p =  (6d - e),   (q = 24d - 9e + 2f ) 

We have,     x = pt+1, y = qt-1, u = pt-1, v = qt+1 

Let us take d=5 e=4 & f=3, t=2 & and  

Since (    = d,   =e &   = f, t = t )  

Hence we have  (           , t)=(5,4,3,2) and 

p=26, q=90,  a3=72,  a4=163,  a5=172,  a6=37 

Thus the sum of even & sum of odd coefficents are 

(  +a4+a2+  ) = (  +a3+a1) 

(37+163+3+5) = (132+72+4)  = 208 

 x=pt+1, y=qt-1, u=pt-1, v=qt+1 

And we get (x, y, u, v) = (53,179,51,181) 

After substituting the coefficients in the sixth degree polynomial we get the below mentioned 

equation, 

    
      

       
        

        
     

     
      

      
     

       
        

        
     

     
      

  

                                  

                                      

               

The later equation can easily be verified that  

(x, y, u, v) = (53,179,51,181) is the solution to the sixth degree polynomial. 

 

Degree, n=7 
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For n=7  Using,    = d,    = e &   = f, t = t            &  

Substituting the values of (m, n) in equation (B) for various coeficents (a3, a4, a5, a6) we get, 

For example for,  

   we put m=3, n=7 

   we put m=4, n=7 

   we put m=5,  n=7 

   we put m=6, n=7 

   we put m=7, n=7.     

Hence we get : 

  = (35d-15e+5f),                        = (105d-40e+10f)  

  = (126d-45e+10f),                   = (70d-24e+5f),  

  =(15d-5e+f) 

& we get  p = (7d - e),                       (q = 35d - 11e + 2f) 

p = 31, q=137,    =130, a4=395 ,a5=480, a6=269  &  a7=58 

x=pt+1, y=qt-1, u=pt-1, v=qt+1 

Hence for  (ao, a1, a2, t) = (5,4,3,2) we get 

p=31, q=137,   =130, a4=395, a5=480, a6=269,   =58 

And (x, y, u, v)=(63,273,61,275) & we get the seventh degree polynomial given below 

                                                             

                                                            

The later equation can easily be verified that (x, y, u, v) = (63, 273, 61, 275) is the solution to the 

seventh degree polynomial. 
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                                                                3.    Conclusions 

   The later method can be used to solve polynomial equations of any degree ‘n’ with only four 

parameters (d, e, f, t). Also polynomial equations like the above can be generated which we 

know have guaranteed integer solutions. 
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